Economic Geology, Vol. 105, 2010, pp. 3-41

Abstract

Porphyry Cu systems host some of the most widely distributed mineralization types at convergent plate boundaries, including porphyry deposits centered on intrusions; skarn, carbonate-replacement, and sediment-hosted Au deposits in increasingly peripheral locations; and superjacent high- and intermediate-sulfidation epithermal deposits. The systems commonly define linear belts, some many hundreds of kilometers long, as well as occurring less commonly in apparent isolation. The systems are closely related to underlying composite plutons, at paleodepths of 5 to 15 km, which represent the supply chambers for the magmas and fluids that formed the vertically elongate (>3 km) stocks or dike swarms and associated mineralization. The plutons may erupt volcanic rocks, but generally prior to initiation of the systems. Commonly, several discrete stocks are emplaced in and above the pluton roof zones, resulting in either clusters or structurally controlled alignments of porphyry Cu systems. The rheology and composition of the host rocks may strongly influence the size, grade, and type of mineralization generated in porphyry Cu systems. Individual systems have life spans of ~100,000 to several million years, whereas deposit clusters or alignments as well as entire belts may remain active for 10 m.y. or longer.

 

Economic Geology